417 research outputs found

    CHARACTERISTICS OF HEAD MOUNTED DISPLAYS AND THEIR EFFECTS ON SIMULATOR SICKNESS

    Get PDF
    Characteristics of head-mounted displays (HMDs) and their effects on simulator sickness (SS) and presence were investigated. Update delay and wide field of views (FOV) have often been thought to elicit SS. With the exception of Draper et al. (2001), previous research that has examined FOV has failed to consider image scale factor, or the ratio between physical FOV of the HMD display and the geometric field of view (GFOV) of the virtual environment (VE). The current study investigated update delay, image scale factor, and peripheral vision on SS and presence when viewing a real-world scene. Participants donned an HMD and performed active head movements to search for objects located throughout the laboratory. Seven out of the first 28 participants withdrew from the study due to extreme responses. These participants experienced faint-like symptoms, confusion, ataxia, nausea, and tunnel vision. Thereafter, the use of a hand-rail was implemented to provide participants something to grasp while performing the experimental task. The 2X2X2 ANOVA revealed a main effect of peripheral vision, F(1,72) = 6.90, p= .01, indicating peak Simulator Sickness Questionnaire (SSQ) scores were significantly higher when peripheral vision was occluded than when peripheral vision was included. No main effects or interaction effects were revealed on Presence Questionnaire (PQ version 4.0) scores. However, a significant negative correlation of peak SSQ scores and PQ scores, r(77) = -.28, p= .013 was revealed. Participants also were placed into \u27sick\u27 and \u27not-sick\u27 groups based on a median split of SSQ scores. A chi-square analysis revealed that participants who were exposed to an additional update delay of ~200 ms were significantly more likely to be in the \u27sick\u27 group than those who were exposed to no additional update delay. To reduce the occurrence of SS, a degree of peripheral vision of the external world should be included and attempts to reduce update delay should continue. Furthermore, participants should be provided with something to grasp while in an HMD VE. Future studies should seek to investigate a critical amount of peripheral vision and update delay necessary to elicit SS

    Optimized Sample Preparation for MALDI Mass Spectrometry Analysis of Protected Synthetic Peptides

    Get PDF
    The recent development and commercialization of Fuzeon (enfuvirtide) demonstrated that a convergent strategy comprised of both solid- and solution-phase synthetic methodologies presents a viable route for peptide manufacturing on a multi-ton scale. In this strategy, the target sequence is prepared by stepwise solid-phase synthesis of protected peptide fragments, which are then coupled together in the solution-phase to give the full-length sequence. These synthetic methodologies pose a unique challenge for mass spectrometry (MS), as protected peptide intermediates are often marked by poor solubility, structural lability, and low ionization potential. Matrix-assisted laser desorption/ionization (MALDI) MS is uniquely suited to such analytes; however, generalized protocols for MALDI analysis of protected peptides have yet to be demonstrated. Herein, we report an operationally simple sample preparation method for MALDI analysis of protected peptides, which greatly facilitates the collection and interpretation of MS data. In this method, the difficulty in MS analysis of protected peptides has been greatly diminished by use of dithranol as a matrix and CsCl as an additive, giving rise to intentionally-formed Cs+ adducts. With greatly reduced fragmentation, better crystalline morphology, and easier data interpretation, we anticipate that these findings will find utility in peptide process development and manufacturing settings for reaction monitoring, troubleshooting, and quality control

    R04. HIV-1 Glycoprotein 120 Promotes Affective Dysfunction in Mice and Medium Spiny Neuron Necrosis

    Get PDF
    Corresponding author (BioMolecular Sciences): Emaya Moss, [email protected]://egrove.olemiss.edu/pharm_annual_posters/1003/thumbnail.jp

    An Analysis of the Challenges Facing the Redevelopment of Intersection 5 in San Juan, Puerto Rico

    Get PDF
    This report, prepared for CSA Group in Puerto Rico, examines several proposed and on-going changes to Intersection 5, the gateway to historic Old San Juan. Through interviews with representatives from key agencies and organizations, the project assessed the level of communication among the stakeholders, including the general public in the adjacent community of Miramar, and recommended ways to integrate the major redevelopment efforts presently underway (the Convention Center District, San Juan Waterfront, Intersection 5, and a park project). Additionally this project suggested ways to modify and integrate possible routes for all modes of traffic (including motorized vehicles, light rail, buses, water taxis, bicycles, and pedestrians) to create a signature entry to the Islet of San Juan

    High Potential for Using DNA from Ancient Herring Bones to Inform Modern Fisheries Management and Conservation

    Get PDF
    Pacific herring (Clupea pallasi) are an abundant and important component of the coastal ecosystems for the west coast of North America. Current Canadian federal herring management assumes five regional herring populations in British Columbia with a high degree of exchange between units, and few distinct local populations within them. Indigenous traditional knowledge and historic sources, however, suggest that locally adapted, distinct regional herring populations may have been more prevalent in the past. Within the last century, the combined effects of commercial fishing and other anthropogenic factors have resulted in severe declines of herring populations, with contemporary populations potentially reflecting only the remnants of a previously more abundant and genetically diverse metapopulation. Through the analysis of 85 archaeological herring bones, this study attempted to reconstruct the genetic diversity and population structure of ancient herring populations using three different marker systems (mitochondrial DNA (mtDNA), microsatellites and SNPs). A high success rate (91%) of DNA recovery was obtained from the extremely small herring bone samples (often <10 mg). The ancient herring mtDNA revealed high haplotype diversity comparable to modern populations, although population discrimination was not possible due to the limited power of the mtDNA marker. Ancient microsatellite diversity was also similar to modern samples, but the data quality was compromised by large allele drop-out and stuttering. In contrast, SNPs were found to have low error rates with no evidence for deviations from Hardy-Weinberg equilibrium, and simulations indicated high power to detect genetic differentiation if loci under selection are used. This study demonstrates that SNPs may be the most effective and feasible approach to survey genetic population structure in ancient remains, and further efforts should be made to screen for high differentiation markers.This study provides the much needed foundation for wider scale studies on temporal genetic variation in herring, with important implications for herring fisheries management, Aboriginal title rights and herring conservation

    Intrinsic and extrinsic drivers of activity budgets in sympatric grey and harbour seals

    Get PDF
    D. J. F. Russell was funded by the UK Department of Energy and Climate Change (DECC) as part of their Offshore Energy Strategic Environmental Assessment programme and by Scottish Government as part of their Marine Mammal Scientific Support Research Programme (MMSS/001/11). The telemetry tags and their deployment were funded by DECC, the Natural Environment Research Council, Scottish Government, Marine Scotland Science and The European Commission.Investigation of activity budgets in relation to seasonal, intrinsic (age, sex) and extrinsic (time of day, spatial) covariates enables an understanding of how such covariates shape behavioural strategies. However, conducting such investigations in the wild is challenging, because of the required large sample size of individuals across the annual cycle, and difficulties in categorising behavioural states and analysing the resulting individual-referenced and serially correlated data. In this study, from telemetry tags deployed on 63 grey seals (Halichoerus grypus) and 126 harbour seals (Phoca vitulina) we used behavioural data, and movement data within a Bayesian state-space model (SSM), to define population-level activity budgets around Britain. Using generalised estimating equations (GEEs) we then examined how time spent in four states (resting on land (hauled out), resting at sea, foraging and travelling) was influenced by seasonal, intrinsic and extrinsic covariates. We present and discuss the following key findings. (1) We found no evidence that regional variation in foraging effort was linked to regional population trajectories in harbour seals. (2) Grey seals demonstrated sex-specific seasonal differences in their activity budgets, independent from those related to reproductive costs. (3) In these sympatric species there was evidence of temporal separation in time hauled out, but not in time foraging. (4) In both species, time spent resting at sea was separated into inshore (associated with tidal haul out availability) and offshore areas. Time spent resting at sea and on land was interchangeable to some extent, suggesting a degree of overlap in their functionality. This may result in a relaxation of the constraints associated with a central place foraging strategy. More generally, we demonstrate how a large dataset, incorporating differing tag parameters, can be analysed to define activity budgets and subsequently address important ecological questions.PostprintPeer reviewe

    Simple irrigation audit for home lawns in Oklahoma

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Lipid Membranes in Poxvirus Replication

    Get PDF
    Poxviruses replicate in the cytoplasm, where they acquire multiple lipoprotein membranes. Although a proposal that the initial membrane arises de novo has not been substantiated, there is no accepted explanation for its formation from cellular membranes. A subsequent membrane-wrapping step involving modified trans-Golgi or endosomal cisternae results in a particle with three membranes. These wrapped virions traverse the cytoplasm on microtubules; the outermost membrane is lost during exocytosis, the middle one is lost just prior to cell entry, and the remaining membrane fuses with the cell to allow the virus core to enter the cytoplasm and initiate a new infection
    • …
    corecore